
DOCUMENT RESUME

ED 084 155 SE 016 995

AUTHOR Huff, George A.
TITLE Geometry and Formal Linguistics.
INSTITUTION Stanford Univ., Calif. Inst. for Mathematical Studies

in Social Science.
SPONS AGENCY National Science Foundation, Washington, D.C.
REPORT NO TR-201
PUB DATE Apr 73
NOTE 65p,; Psychology and Education Series

EDRS PRICE MF-$0.65 HC-$3.29
DESCRIPTORS Concept Formation; *Geometry; Learning; *Linguistics;

Mathematical Concepts; *Mathematics; Research;
*Structural Analysis; *Structural Linguistics;
Topology

IDENTIFIERS Proof (Mathematics)

ABSTRACT
This paper presents a method of encoding geometric

line-drawings in a way which allows sets of such drawings to be
interpreted as formal languages. A characterization of certain
geometric predicates in terms of their properties as languages is
obtained, and techhiques usually associated with generative grammars
and formal automata are then applied to the geometric framework.
Section 1 of the paper specifies the geometric framework; section 2
develops the background material on formal languages, grammars, and
automata; section 3 is concerned with geometric predicates; section 4
covers invariance theorems; and section 5 indicates a ;eas for further
investigations. (DT)

'FILMED FROM BEST AVAILABLE COPY

GEOMETRY AND FORMAL LINGUISTICS

BY

GEORGE A. HUFF

TECHNICAL REPORT NO. 201

APRIL 27, 1973

PSYCHOLOGY AND EDUCATION SERIES

U1 0E0A0111AF1410k mrattm.
tOUCAtitA SWF IF ANE
NA/it:P.1C. iN1I1tUtt Or

EDUCATION."
1.,1
A.

1

1 t

1,

I t
1 ,

,

e. II
',it'd...,

1,' ,11

' I
J., 11,
1,, 1,

1.1 1 1/ 41 1.10
f)

',4""O '"/
0, 414 ,1, ro.c,
Ale

'I '1
ft 1.',

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

STANFORD UNIVERSITY

STANFORD, CALIFORNIA

TECHNICAL REPORTS

Pyre Imo., SERIES

INSTITUTE r011 MA STUDIES IN THE SOCIAL. SCIENCES

(Mac. of pubiocaton skier in parentht . 1 nutuisiur, Nie in different iron, title of Technical Report,
this It AlIN .t.trAll in piurnihrr.os.i

trio reports no. 44, see TechrfIcal Report he. i ;.°5 I

50 R. C. Atkinson and R. C. Calfee, Mathematical learning theory. January 2,1963, (In B. B, Woiman (Ed.), Scierallic psychology. New York:
Basic Books, Inc., 1965, Po, 254-215i

P. Suppes, E. Crothers, and R. NeU. Applicant), 'of -tathernatical learning theory and lingo sire analysis to vowel phoneme matching In
Russian wads. December 28,1962.

52 R. C. Atkinson, R. Cathie, G. Sommer, Jeffrey and R. Shne-,iker. A test ol three -nuclei% for stimulus compounding with children.
January 29,1963. iJ. !Xi. tut 1301 1964 67, 52-581

53 S. Crothers, General Markov models for learning with ,rater -inlet forgetting, April 8,1963
54 J. L. Myers and R. C. Atkinson. Choice behavior and reward structure. May 24, 1963. (Journal math. Psychol., 1964, 170-2031
55 R. E. Robinson. A set-theorelical swatch to empirical treaninglulness of measurement statements. June 10,1963.
56 E. Crothers, R. Weir and P. Palmer, The role of transcription In the learning of the orthographic representaiions of Russian sounds, Junit17,, 1963.
57 P. Suppes. Problems ol optimization in learnwg a list of simple Items. July 22,1963. (In Maynard W. Shelly, II and Glenn L. Bryan tEds.),

Human Judgments and Optimality. New Yon. Wiley. 1964. Pp. 116-1261
58 R. C. Atkinson and E. J. Crothers. Theoretical note: all-or-none learning and intertrial lorgeuing. July 24,1963.
59 R. C. Calfee. Long-term behavior of rats under probabilistic reinforcement schedules. October 1,1963.
60 R. C, Atkinson and E. J. Crothers. Tests ol acquisition and retention, axioms for paired-associate learning. October 25,1963. IA comparison

of paired-associate learning models having different acquisition and retention axioms, J. math. Psycho). , 1964, I, 285-315)
61 W. J. McGill and J. Gibbon, The general-gamma distribution and reaction times. November 20,1963. (J. math. Psychol., 1965, 2, 1-18)
62 M. F. Norman. Incremental learning on random trials. December 9,1963. (.2. math. Psycho,. , 1964, t, 336.351)
63 P. Suppes. The development of mathematical concepts in children. February 25,1964. (On the behavioral foundations of mathematical concepts.

Monographs of the Society for Research in Child Development, 1965, 30, 60.96)

64 P. Suppes. Mathematical concept formation In chilmen. April 10, 1964. (Amer. Psychologist, 1966, 21,139-150)
65 R. C. Cailee, R. C, Atkinson, and T. Shelton, Jr. Mathematical models for verbal learning, August 21,1964. fln N. Wiener and J. P. Schoda

(Eds.), Cybernetics of the Nervous System' Profess in Brain Research. Amsterdam, The Netherlands: Elsevier Publishing Co., 1965.
Pp. 333-349)

66 L. Keller, M. Cole, C. J. Burke, and W. K. Estes. Paned associate learning with differential rewards. August 20,1964, (Reward and
Information values of trial outcomes in paired associate learning. (Psychol. Monogr., 1965, 79, 1 -21)

67 M. F. Norman. A probabilistic model for free - responding, December 14, 1964.

68 W. K. Estes and H. A. Taylor. Visual detection in relation to display size and redundancy of critical elements. January 25,1965, Revised
7-1-65. (Perception and Psychophysics, 1966.1, 9-16)

69 P. Suppes and J. Oonlo. Foundations of stimulus-sampling theory for continuous-time Processes. February 9,1965. U. math, Psychol., 1967,
4, 202-225)

70 R. C. Atkinson and R. A. Kinchla. A learning model ice forced-choice detection experiments. February 10,1965. (Br. J. math Mt. Psychol.,
1965,18,184-206)

71 E. J. Gathers. Presentation orders for items hom different categories. March 10, 1965.
72 P. Suppes, G. Groan, and M. Selling-Rey. Some models for response latency In paired-associates learning. May 5,1965. (J. math. Psychol.,

1966, 3, 99-128)
73 M. V. Levine. The generalization function In the probability learning experiment. June 3,1965.

74 D. Hansen and T. S. Rodgers. An exploration of Psycholinguistie units in Initial reading. July 6,1965.

75 B. C. At nold. A correlated urn-scheme for a continuum of responses, July 20,1965.

76 C. Izawa and W. K. Estes, Reinforcement-test "winces In paired - associate learning. August 1,1965. (Fsychol. Reports, 1966, 18, 879-919)
77 S. L. alit:art. Pattern discrimination learning with Rhesus monkeys. September 1, 1965. (Psycho'. Reports. 1966, 19, 311 -324)
78 J. L. Phillips and R. C. Atkinson. The effects of display size on short-term memory. August 31,1965.
79 R. C. Atkinson and R. M. ShIffrin. Mathematical models for memory and learning. September 20,1965,

80 P. Suppes. The psychological foundations of mathematics. October 25, (965. (Colloques Intemationaux du Centre National de la Recherche

Sclentlflque. Editions du Centre National tie la Recherche Scientifique. Paris: 1967. Pp. 213-242)
81 P. Suppes. Computer-assisted instruction in the schools- mounitialii les, Problems, prospects, October 29,1965.

82 R. A. Kinchla, J. Townsend, J. Yellott, Jr., and R. C. Atkinson, Influence of correlated visual cues on auditory signal detection.

November 2,1965. (Perception and Psychoohysics .1966, I, 67-73)

B3 P. Suppes, M. Jerman, and G. Gwen. Arithmetic drills and review on a computer-based teletype. November 5,1965. (Arithmetic Teacher,

April 1966, 303-309,
84 P. Strives and L. Hyman. Concept learning with non-verbal geometrical stimuli . November 15. 19br.

85 P. Holland. A variation on the minimum chi-square test. (J. math. Psycirol., 1967, 3, 377-4131.

86 P. Suppes. Accelerated program in elementary-school mathematics -- the second year. November 22,1965. (Psychology in the Schools, 1966,

3, 294-307)
87 P. Lorenzen and F. Biala& Logic as a dialogical game. November 29,1965.
88 L. Keller, W. J. Thomson, J. R. Tweedy, and R. C. Atkinson, The effects of reinforcement interval on the acquIsitios or paired-associate

responses. Oecernber 10, 1965. (J. Ep. Psychol., 1967, 73, 268-277)
89 J. I. VOW, Jr. Some effects on noncontingent success in human probability learning. December 15, (965.

90 P. Supper and G. Groan. Some counting models for first-grade performance data on simple addition facts. January 14,1966. (In J. M. Scandura

(Ed.), Research In Mathematics Education. Washington, D. C.: NCTIC, 1967. Pp. 35-43.

91 P. Supper. information processing and choice behavIor. January 31,1966.

92 G. Grotto and R. C. Atkinson. Models for optimizing the lerrning process. February 11,1966. (Psychol, Bulletin, 1966, 66, 309-320)

93 R. C. Atkinson and D. Hansen. Computer-assisted instruction In initial reading: Stanford project. March 17, 1966. (Reading Research

Quarterly, 1966, 2, 5-25)

94 P. Suppes. Probabilistic inference and the concept of total evidence. March 23,1966. On J. Hlntlkka and P. Suppes (Eds.), Aspects of

Inductive Lat, Amsterdam: North-Holland Publishing Co., 1966. Pp. 49-65.

95 P. Suppes. The axiomatic method In hIgh-school mathematics. Apr11 12, 1966. (The Role of &elongates Problem Solving In Mathematics.

The Conference Board of the Mathematical Sciences, Washington, D. C. Ginn and Co. , 1966. Pp. 69-76.

(Continued on Inside back cover)

COO
GEOMETRY AND FORMAL LINGUISTICS

LLJ

by

George A. Huff

TECHNICAL REPORT NO. 201

April 27, 1973

PSYCHOLOGY AND EDUCATION SERIES

Reproduction in Whole or in Part Is Permitted for

Any Purpose of the United States Government

Copyright e 1973, by George A. Huff

All rights reserved

"PERMISSION TO REPRODUCE THIS COPY.
RIGHTED MATERIAL HAS BEEN GRANTED BY

.George A. Huff
TO ERIC AND ORGANIZATIONS OPERATING
UNDER AGREEMENTS WITH THE NATIONAL IN.
STITUTE ('F EDUCATION FURTHER REPRO-
DUCTIO'. OUTSIDE HE ERIC SYS I EM RE-
QUIRES PERMISSION OF THE COPYRIGHT
OWNER

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES

STANFORD UNIVERSITY

STANFORD, CALIFORNIA

TABLE OF CONTENTS

ACKNOWLEDGMENTS

INTRODUCTION 1

SECTION 1: GEOMETRIC FRAMEWORK 3

SECTION 2: GRAMMARS AND AUTOMATA 13

SECTION 3: GEOMETRIC PREDICATES 19

SECTION 4: INVARIANCE THEOREMS 39

SECTION 5: FURTHER INVESTIGATIONS 51

BIBLIOGRAPHY 58

ACKNOWLEDGMENTS

I wish to express my sincere gratitude to all those

through whose hands this dissertation passed prior to

its completion, and particularly, to Professor Patrick

Suppe', whose enosouragemeot and patience over a long

period of time deserves special mention.

Partial financial support was received from the

National Science Foundation, Grant NSFGJ-443X3.

1

INTRODUCTION

In this paper we will present a method of encoding geometric line-

drawings in a way which allows sets of such drawings to be interpreted

as formal languages, the purpose being to obtain a characterization of

certain geometric predicates in terms of their properties as languages.

Techniques usually associated with generative grammars and formal

automata can then be applied to this geometric framework.

By way of background, it should be mentioned that the results

contained herein are an extension of work begun by William Rottmayer

and myself in the summer of 1969, under the direction of Professor

Patrick Suppes. Our effort was then informally described as a study

of geometric concept formation, as it might be applied to the learning

of such concepts by children. The formulation presented here is an

outgrowth of that summer's work. More extensive background material

appears in Rottmayer's report, "A Formal Theory of Perception."

Our investigation had been motivated primarily by a study of

perceptrons, which are formal machines capable of learning to recognise

certain classes of geometric figures. A perceptron accepts input in the

form of figures represented on a checkerboard-like grid, and through a

series of reinforced trials, its internal coefficients are modified to

converge to a state where recognition is perfect. The ability of a

perceptron to learn to recognise even the simplest of geometric predicates

is extremely limited, as demonstrated by Minsky and Papert in Perceptrons.

Another framework for the kind of learning which can be applied to

geometric concepts is suggested by Professor Suppes' paper "Stimulus-

Response Theory of Finite Automata." This paper indicates that the

2

stimulus-response theory of learning can be adequately applied to the

learning of any task which can be performed by a finite automaton; that

is, for any such task, the finite automaton which performs it represents

the convergent state of a stimulus-response learning model for that

task. In view of the possibility that this result could be extended

to include stronger forms of automata, in particular, various kinds of

Turing machines, our goal in this paper is to classify certain geometric

predicates on the basis of their recognition-potential by the various

classes of automata.

3

SECTION 1: GEOMETRIC FRAMEWORK

The first problem is to specify the kinds of geometric figures

which most naturally lend themselves to a simple learning situation.

It should be noted that whereas the perceptron was intented to be a

general pattern recognition device with no particular emphasis on

geometric aspects, we have chosen to focus on those geometric aspects

themselves. Roughly speaking, the kind of geometry we want to consider

is that portion of Euclidean geometry consisting of all finite straight-

line drawings in the plane; that is, we take for our domain all planar

figures made up of a finite number of line segments, each of a finite

length. We will identify each predicate defined over a domain of such

figures with its extension as a set of line-drawings. Hence a figure

P can be said to satisfy the predicate "contains a triangle" if and only

if F E {xlx is a figure containing a triangle}. We want to exclude

predicates which depend on the quantitative aspects of these drawings,

such as the exact measurement of area, length or angle, as well as those

predicates which are a function of the orientation of the drawings, and

so on. For example, we would like to include such predicates as "is a

triangle" and "contains a triangle" while excluding "is an equilateral

triangle" and "is a horizontal line." By committing ourselves to such

restrictions on our figure domain we isolate a class of figures which

is moderately rich in geometric properties and yet lends itself well to

linguistic treatment.

It seems natural then that the encoding of a figure should convey

information about the lines present and how they intersect one another.

Certainly the translation of a particular instance of a figure into such

4

a representation as a coded set of line segments will represent a

considerable abstraction. For example, any two triangles would be

coded identically, whether they be isosceles, equilateral, or whatever:

the coding would show three line segments, each pair of which has a

unique endpoint in common. Let us consider how an encoding might be

derived for the following figure:

Figure 1

First assign to eacn vertex, that is, each endpoint of a line segment or

intersection of line segments, a unique Roman letter, as in Figure 2:

Figure 2

B

Each line segment in the figure will be encoded as an ordered sequence

of those letters which correspond to the vertices on the line segment.

Thus ABC tells us that one line segment in the figure has endpoints

A and C and central vertex B. A complete coding for the figure is a

list of all the line segments that appear, e.g. ABC, BD, DEA, and FE.

It should be evident that there is such a coding for every figure,

whether the figure is in the form of a line drawing as given here or a

set of Cartesian coordinates in the plarOk This coding is not unique;

the most obvious reason is that the vertex letters were assigned arbi.-

trarily. Furthermore, the line segments could have been listed in a

different order and the vertices within a line segment could have been

5

listed in reverse order. However this lack of uniqueness will cause

no difficulty because there is a simple algorithm for determining whetther

or not two codings apply to the same figure.

The most natural way to formalize thiscodingsp.rocedare is to

represent a coding for a figure as a set of codings for its line segments,

relative to a given labelling of its vertices. Each line segment would

be encoded by its vertex-labels, listed in order from endpoint to end-

point. Thus the above example would become {ABC, BD, DEA, FE}. Other

codings for the same figure are {DB, FE, DEA, CBA} and {KXY, AX, KHA, WI!}.

For our initial discussion of codings we will use this set-theoretic

notation, as its primary advantage is convenience. We soon realize though

that the usual benefits associated with set theory do not accrue: we can

use unions and intersections of codings only with extreme care, and it

is not at all clear what the complement of a coding or set of codings

should be.

We can now give a more precise definition of what we shall mean

throughout this paper by the word "coding." Let (Al, A2, ... An, ...)

be a countably infinite set: the Ai's will be vertex-labels, and we will

use A, B, C, ... as variables ranging over the set CL.

Definition 1.1 A line segment is is a finite list of elements from GL

of length at least two and such that no Ai occurs more than once.'

By way of notation we let A denote the set of all such line segments

and [la] the set of all vertex-labels occurring in a line segment ls.

1Clearly we really mean to say "a coding for a line segment ls ..."
but for convenience we will shorten this to "a line segment is ..." when
no confusion will arise.

6

rav r_
The length of is is denoted Ilsi and is equal to 11s1. An endpoint of ls

is a vertex-label which occurs first or last in the list ls.

Definition 1.2 A coding c is a finite set of line segments such that:

first, if lsi c c and 182 c c then [180 (1 1152] < 2, and second, if is c c

and A c [ls) then either A is an endpoint of is or there is an ls' e c

with A c [ls') and ls' 0 ls.

We let C. be the set of all codings. The conditions in Definition

1.2 require that ho pair of line segments can intersect more than once

and that each lortex represent an endpoint, a genuine point of inter-

section, or both. To sort out the many different codings which would

correspond to the same figures, we give the following:

Definition 1.3 Let = be a binary relation on C defined as follows:

if cl and c2 are codings then cl = c2 if and only if there is a one-

to-one function f mapping k...) [ls] onto U [Is] such that
lscci lscc?

1) if ls E cl and ls An1An2...Ani then either f(Ani)f(An2)...f(Ani)

c2 or f(Andf(Ani_1)...f(Ani) E c2, and ccversely,

2) if is c c2 and ls An1An2...Ani then either g(Ani)g(An2)...g(Anl)

c cl or g(A)g(Ani_1)...g(Ani) E cl, where g

This definition says that two codings are equivalent ("=") provided

they differ only in the names of the vertex-labels present and in the

order in which the line segments are taken. Note that U [ls] is the
Iscc

set of all vertex-labels appearing in the coding c.

As an example, consider the codings cl (ABC, BDE, AE, AD, CE, CD}

7

and c
2

(DEF, EAB, DB, BF, AF, AD), both derived from the figure:

Figure 3

A

Then LI (181 !ABC' U IEDE1 (AE1 U IAD1 U ICE] (A, B, C,
lsccl

D, E) and similarly 1..) (ls) (A, B, D. E, F). To see that cl = c2,
locc2

let f: (A, B, C, D. B) * (A, B, D, E, F) be defined by f(A) D, f(B) C.

f(C) F, f(D) A, f(E) B. The line segment ABC in cl then corresponds

to the line segment f(A)f(B)f(C) DEF in c2.

It is clear from the nature of the definition that "E" is an

equivalence relation, and hence partitions C into disjoint classes of

equivalent codings. An obvious theorem relating equivalence for codings

to figures in the plane is this:

Theorem 1.4 If cl is a coding for a figure P and ci 3 c2, then c2 is

also a coding for F. Conversely, if cl and c2 are codings for F then

cl = c2. Thus each figure determines a unique class of codings.

There are two important limitations of the codings as defined above.

First, there are a number of geometric predicates which are inexpressible.

in addition to those more or less quantitative predicates which we

specifically excluded earlier. Generally speaking, these are predicates

which are dependent upon the preservation of inside-outside relationships

within a class of equivalent codings. For example, the drawing in

Figure 2 would have the same (that is, an equivalent) coding as the

following figure, in which vertex P has been shifted to the interior

of the triangle:

'Wire 4.

8

A special case of this type of problem is convexity: we can tell from

its coding whether or not a figure is a polygon, but there is no way to

distinguish convex polygons from concave ones. Another example to show

the extent to which deformations within a class of figures can affect

the notion of interior and exterior is this:

Figure 5

A
A most important geometric notion which is.related to this type of

problem concerns the identification of the regions, or faces,2 into

which a figure divides the plane. For example the following two figures

have the same coding:

Flaunt 6 Figure 7

Figure 6 has faces bounded by ABEFD and CEP whereas Figure 7 has faces

bounded by ABCD and CEF. Although we have no means of explicitly ident-

ifying the vertices which bound the faces of a figure, it is a simple

$A "face" is usually considered to be an area of the plane which
is bounded by lines of a figure and which contains neither lines nor
vertices in its interior. Every finite figure determines a unique
infinite face, but we will follow convention and disregard it.

a

matter to show that the number of faces will remain constant within a

class of figures having equivalent codings. To do this we use Euler's

formula3, relating the number of vertices and line segments present in

a figure to the number of faces:

V - LS + F = N

where V is the number of vertices , LS is the number of line segments

(where a line segment coded as ABCD is considered to be comprised of the

three line segments AB, BC and CD), F is the number of bounded faces, and

N is the number of connected components making up the figure. In the

previous example (Figures 6 and 7) V = 6, LS = 7 and N = 1, hence F =

1 + 7 - 6 = 2. For a given equivalence class of codings, the number of

vertices and line segments is clearly invariant, the latter being given

by '([ls1 - 1). Also, the number of connected components can be deter-
lsEc

mined from any coding by first grouping vertices into classes according

to whether they are connected to one another by a path of line se,ments,

and then counting these classes. Hence the number of faces F can be

determined as well, and is thus invariant.

The second limitation of our present formulation has to do with

the connection between codings and figures in the plane. We have said

so far only that any figure determines a class of codings, but unfortu-

nately it does not always happen that a coding determines a non-empty

class of planar figures. In fact, the problem of specifying constraints

on our system which will guarantee a correspondence between non-empty

classes of codings and figures was studied by Rottmayer [pp. 56-611 and

turns out to be extremely difficult. We will discuss some background

material here, with the intention of indicating the scope of the problem.

3For more material on Euler's formula, see Berge, The Theory
of Grarhs. p. 207 ff.

10

We can begin by defining a process called segmentation, which we

will use to obtain new codings from a given one. This process will

permit us to introduce a finite number of additional vertices in a line

segment and to "break" the original line segment at each of these new

points. Thus a line segment ABCD occurring in a coding c could become

AA
1'

AIA
2'

..., A
n
B, BCD under segmentation; we call the resulting coding

a segmentation of the original coding. The idea of course is to use

straight-line figures to approximate drawings containing one or more

curved lines.

The process of segmentation allows us to classify non-planar codings

into two varieties: one which we will call "geometric" and the other

"topological." By a topologically non-planar (TNP) coding we mean a

non planar coding which has no planar segmentation. We use the adjective

"topological" because such codings will remain non-planar under the soti.

of elastic deformations of the plane that are studied in algebraic

topology. It will be natural to think of such codings in terms of

vertices connected by curved lines, since we can approximate such curves

by unlimited segmentation without destroying the non-planar property.

There are basically two such figures: Kuratowski proved in 1930 that

any TNP figure must contain either one or the other as a subfigure.

The first is the "complete graph over five vertices," that is, the

figure which contains only five vertices, with lines connecting each

pair of vertices. An attempt to draw this figure will result in a figure

with a missing vertex:

Figure 8

11

The second consists of two sets of three vertices each, with lines

drawn from each vertex in the first set to each vertex in the second:

Figure 9

It is worth mentioning the proofs of the non-planarity of these two

examples rely on the violation of Euler's formula.

A non-planar coding will be said to be geometrically non-planar

(GNP) if it is not TNP, that is, if some segmentation of it is planar.

The simplest example of such a coding is c {ABC, AED, BD, CE }. It

would be "drawn" as follows:

Figure 10

C

Since line segments CE and BD must intersect One another and there is

no vertex present in the coding corresponding to this intersection,

this "figure" cannot be embedded in the plane. However, by segmenting

the line segment CE for example, we get a drawing which is certainly

planar:

u re _11

12

Another example of a GNP coding is given by c (ABCD, DEF, CEG, BC, AF),

and 1.3uld be drawn:

Figure 12

B C D

Figures 11 and 12 are distinct in that neither contains the other as a

subfigure, nor is there a common GNP subfigure. Obviously, any coding

which contains either of these two examples will also be non-planar.

These two figures are alike, however, in that they both make use of the

fact that a triangle is the only necessarily convex polygon, and hence,

when a side is extended, the endpoint must lie outside the triangle.

There are other GNP figures though which do not seem to rely on this

fact, and hence it seems unlikely that a Kuratowski-type result can be

established for the GNP codings.

Although the difficulties posed by these non-planar figures are

serious ones, it will still be possible to interpret each coding as a

class of plane figures, with possibly missing vertices. None of the

simple geometric properties, like connectedness or triangularity, will

be affected by this. However, throughout the following, it must be

remembered that the correspondence between codings and figures is not

an exact one.

13

SECTION 2: GRAMMARS AND AUTOMATA

In this section we will develop the necessary background material

on formal languages, grammars and automata, in order to establish

notation and to state the fundamental results which we will need

later. Our notation is based on that used in Formal tonnages and

their Relation to Automata, by Hoperoft and Ullman. This will allow the

use of additional theorems appearing there without re-statement.

By an alphabet, or vocabulary, we will mean a finite set V, whose

elements can be concatenated to form strings or words. V* denotes the

set of all strings of finite length over the alphabet V. We use the

symbol e to denote the empty string and define V+ = V* - {e }.

Definition 2.1 A quadruple G VN, VT, P, S> is a grammar whenever

1) VN and VT are non-empty finite disjoint sets. We let V

VN U VT.

2) P is a finite subset of (V+x V+A-){(S,e)}.

3) S VN.

It is customary to refer to VN, VT, P, and S as the variables

(non-terminals), terminals. production rules and start symbol, respec-

tively, of the grammar C. A production rule (a,B) E P will be repre-

sented by B. Note that we do not allow general rules of the form

a - e.

Given a grammar G we can define a binary relation -*G on V
*

as

follows: a 4 B if and only if there exist x E V
*
and y E V

*
such

that a = xXy, B xAsy, and A A' c P. Thus -
G

represents a one-step

14

derivation for the grammar G. We can extend 4.c in the natural way to

a new relation G
*

to represent derivations of any finite number of

steps, that is, a 4.G
*

B if and only if there is an integer n > 0 and

al, a2, ..., an c V
*

such that a 4.0 al, al (1 a2, . "' an -1 4.G an 8.

By the language generated by G, denoted L(G), we will mean the set

{aka c VT+ and S 4.G* a}. One stipulation is made regarding the rule

S e: If this rule occurs in P, then the only derivation in which it

may be used is the one-step derivation S G* e. We will say that two

grammars GI and G2 are equivalent if and only if L(G1) L(G2).

We can classify grammars according to the form of their production

rules. The most general type of grammar, having no restrictions on

the production rules, is that which is defined above, called a Type 0

grammar. If all the production rules of a grammar have the form S e

or a B where lal < 181, the grammar is said to be Type 1, or context-

sensitive. A grammar whose rules are of the form A 4. 8 where A c VN will

be called a Type 2 or context-free grammar. A Type 3 or regular grammar

is one whose rules have the form S e, A v, or A vB, where S, A,

B c VN and v c VT. It follows that any Type i grammar (i 1, 2, 3) is

also of Type (i-1): furthermore, grammars of different types may be

equivalent. The language generated by a Type i grammar will be called

a Type i (or context-sensitive, context-free, regular) language.

Definition 2.2 A finite automaton is a quintuple <K, E, 6, q
o'

F>

where

1) K and E are finite non-empty disjoint sets (the internal states

and input alphabet respectively)

2) 6: K x E K (the transition function)

15

3) qo c K (the start symbol)

4) F Si K (the tst of final states)

A finite automaton processes an input string left to right,

changing states with each new input symbol as determined by 6, until

the end of the string is reached. The string is said to be accepted by 1

if and only if the last state reached in the processing of the input

string belongs to F. As with grammars it is natural to extend 6 to

6*: K x E* K by the inductive definition

1) if v c E, then 6*(q,v) - 6(q,v)

2) if a c E*, then for v c E, 6*(q,av) = 6(6*(q,a),v).

Thus a is accepted by if and only if 6*(q0,a) c F.

An important limitation of any finite automaton is its bounded

memory capacity. For example, let E = {a, b) and let Li = {anbanin > 0).

A finite automaton processing a string in Li can remember only a bounded

number of a's from the first half of the string, that number being

determined by the number of states; beyond that, the automaton must "loop"

before getting to the b, and hence it will lose count. When this

happens, the automaton cannot determine whether the number of a's after

the b is the same as the number before the b. Thus no finite automaton

can accept the language 1,1.

The following is a fundamental theorem in the theory of automata.

Theorem 2.3 A language is regular, that is, has a regular grammar, if

and only if there is a finite automaton which accepts it

Context-free languages can be similarly characterized in terms

16

of the type of automata which accept them. A pushdown automaton is

essentially a finite automaton, with left-to-right input processing,

which has in addition an unbounded memory in the form of a pushdown

stack, operating on a first in-last out basis. Such a machine can

accept ("recognise") a language like Ll defined above: as the machine

moves left through the initial string of a's, it can store a symbol for

each occurrence; then after passing the b, it can compare each of the

following symbols with a symbol in its storage. Thus, while it cannot

"count" as such, it is capable of making comparisons. By a non-deter-

ministic pushdown automaton, we mean a pushdown automaton which at some

or possibly every stage in its computations has more than one possible

move it can make. The theorem for context-free languages is this.

Theorem 2.4 A language is context-free if and only if there is a non-

deterministic pushdown automaton which accepts it.

We note that a simple context-free grammar which generates L1 is

given by G = < {S}, (a, b }, P, S> where P consists of the two rules

S 4 aba and S 4 aSa.

There are similar theorems for characterizing languages of Type 0

and 1; we will use the notion of a Turing machine for that purpose.

Definition 2.5 A Turing machine is a 6-tuple T = <K, E, r, 6, go, F>

where

1) K. and r are non-empty finite disjoint sets (the states and

the tape symbols of T)

2) E Sir (the input symbols)

17

3) qo c K and F C:K (the start state and the set of final states)

4) 6: K x r + K x r x {Left, Right) (the transition function)

In its usual interpretation, a Turing machine consists of an input tape

divided into cells, each capable of holding an element of r, and a tape

head which can scan the cells of the tape one at a time. The input tape

has a leftmost cell but is infinite to the right, and the input is placed

initially into the first n cells. The tape head stores the current

state symbol and after scanning the contents of a cell, it will change

the current state symbol, replace the cell contents with another symbol

from r, and move one cell to the left or right, all of these actions

being governed by the transition function. The machine starts in state

qo with the tape head positioned at the leftmost tape cell. It continues

to move through the successive configurations of states and tape symbols,

and may come to a halt in one of two ways: either by entering a final

state, or by reaching a combination of state and tape symbol for which

6 is not defined. It is also possible that the machine will never halt.

An input tape will be accepted if and only if the machine processing the

tape eventually halts in a final state.

It is convenient to provide a special symbol B for a blank cell,

withlIcr-Eand such that the range of the transition function is

restricted to K x (r - 00) x (Left, Right); that is, blanks can only be

removed and cannot be printed. The input string, which is finite in

length, would then be followed by an infinite number of blank cells;

this eliminates the problem of having to add new cells to the right end

of the tape when more cells are needed.

There are many different formulations of Turing machines: non-

18

deterministic ones, ones having two-way infinite tapes or even two-

dimensional tapes, others with two or more distinct tapes and tape heads,

each under independent control, and so on. Each of these formulations

can be shown to be equivalent to the original description. However, one

formulation which is not equivalent is known as a linear-bounded automaton

(LBA). This is a non-deterministic Turing machine whose tape length is

fixed by the length of the input; in other words, the tape head cannot

move beyond those cells which contain the input. We can partially over-

come this restriction by changing the form of the input by "padding" the

real input with a number of blank cells; this limits us to a length of

cells which is a linear function of the real input. It is unknown whether

deterministic LBA's accept a smaller class of languages than non-deter-

ministic LBA's.

Theorem 2.6 A language is Type 0 (Type 1) if and only if it is accepted

by some Turing machine (LBA).

The results mentioned here establish a hierarchy of automata in

parallel with the previous ranking of formal grammais. To emphasize

this point, we could have defined finite and pushdown automata as

special cases of Turing machines. The former is a Turing machine which

moves right only and cannot change the symbols it sees. The latter is

similar, but with a memory tape which is accessible only from one end

and whose length is bounded by the length of the input. The four central

types of automata can thus be seen as progressively weaker versions

of a Turing machine.

19

SECTION 3: GEOMETRIC PREDICATES

We can now translate our discussion of codings from the informal

set-theoretical notation used earlier to that of formal languages. The

natural way to do this is to interpret a set c (ABC, BDE, DFG, FA),

for example, as a string of symbols c' ABCODE0DFG#FA, where "0"

serves as a line-delimitation symbol'. Since the order of elements in

a set is irrelevant, we could obtain 23 other strings from the set c

just by thinking of c's elements in a different order: these other

strings will be equivalent to the first under an appropriate definition.

Before we can apply the techniques and theorems of formal languages,

however, it will be necessary to represent codings as strings of symbols

over a finite alphabet. We will want to discuss figures having an

unbounded number of vertices, so we cannot provide distinct alphabet

symbols for each of the vertices which we might encounter in coding an

arbitrary figure. We shall do this by denoting the nth vertex as "A"

followed by n primes, which we will indicate in shorthand as.A(n), or

A'''... "(n times), or occasionally, A(')n. Thus we can use an alphabet

having only three symbols, A, ', 0. Using this system, a triangle could

be coded

(*) A(1)A(2)0A(2)A(3)0A(3)A(1), that is,

(**) A'A"0A"A'"0A"'A'.

In general, a triangle would have the coding

(* * *) A(i)A(j) #A(j)A(k) #A(k)A(i), where i, j, and k are

distinct positive integers, or some permutation of the line segments and

vertices within this string

1We use " #" instead of
confusing symbols which are

(eight altogether).

"," for line-delimitation in order to avoid
used both formally and informally.

20

An alternative alphabet with only two symbols, 0 and 1, could

equally well have been used, by representing A(n) by 01" and # by 0.

The above codings would become

(****) 01011001101110011101, and

01i01.100001k001kOli.

A quick check will indicate that neither of these formulations is

ambiguous, as it might seem at first. Another method for coding would

be to use directly the symbols occurring in (*), namely the alphabet

(A, #, (,), 0, 1, ..., 9), where the vertices would now be distinguished

by their indices in base ten, rather than by the number of primes.

In the following presentation we shall use the alphabet V (A, #, '}

for coding as in (**) above, because it provides a graphic representation

which is easier to read than (****) and easier for a machine to scan than

the alphabet using base ten indices, owing to the smaller nu:aber of

symbols. Some results about different coding procedures will be given

later.

Definition 3.1 is c V
*
, where V (A, #, ' }, is a line segment2 if and

only if is - A(ni)A(n2) A(ni) where j > 2, and each ni is a positive

integer with i 0 i' mi+ n 0 nil. We will denote by A the set of all

line segments.

This definition is clearly a translation of our previous notion of

a line segment. Notice that the symbol "A" must be followed by one

or more primes to be a vertex-label: this conforms to our earlier con-

2Again we use the term "line segment" rather than the more accurate
term "coding for a line segment".

21

vention of using A(n) for the nth vertex. For terminology, we will

refer to a vertex A(n) in a line segment is c A as an endpoint of is

if it happens that A(n) occurs as either the first or the last vertex

in Is; otherwise A(n) is an interior vertex of is.

Definition 3.2 c c V* is a coin if and only if

1) c 15101320 ... Olen where each 1st c A and n > 0,

2) no more than one vertex-label A(m) occurs simultaneously in

ls
i

and Is when I 0 j, and

3) if A(m) is an interior vertex-label in some line segment 1st

then A(m) also occurs as a vertex-label in some line segment

Is where i 0 I.

We will denote the set of codings by C.

As before we let !let be the set of all vertex-labels which occur

in the line segment Is; hence (A"A'A''''t (A', A'', A''''). We will

denote by rciv and (ell the set of all vertex-labels and the set of all

line segments respectively in a coding c3.

Definition 3.3 Let a binary relation E be defined on C by ct s c2

if and only if there is a one-to-one function f mapping (cl)v onto

(c21v such that

1) if is is a line segment in cl and is gm A(n1)A(n2) A(ni),

then either f(A(n1))f(A(n2))... f(A(nOt (c2)1 or

3Put into the terminology of formal languages, we can describe fell
as the set of all substrings of the coding c which are maximal with
respect to the property of not containing the symbol "0", and a similar
characterization applies to (clv.

22

f(A(np)f(A(n)_1)) f(A(n1)) c (c2)1, and conversely,

2) if is is a line segment in c2 and is A(n1)A(n2) A(nj),

then either g(A(n1))g(A(n2)) g(A(nOc fc111 or

g(A(nj))g(A(ni_1)) g(A(n1)) c fcill, where g f-1.

If cl I c2 we call cl and c2 equivalent codings.

Definition 3.4 A predicate P is a subset of V*, where V is defined

as above.

In the usual set-theoretic sense, predicates are identified as

subsets of a specified set, but in the present formulation, it is

possible to think of predicates as languages as well, in particular, as

languages over the alphabet V. Hence certain predicates can be said to

be regular, context-free, and so on. The predicates we have in mind will

be geometric in nature: for example, the predicate K of connectedness

would be defined K (c c V*Ic is a coding of a connected figure in the

plane). Thus K is a sublanguage of C. That K is well-defined is a

consequence of the fact that C is well-defined and that "connectedness"

is a generally recognised property applying to geometric figures.

An example of the type of results we wish to discuss is the

following:

Theorem 3.5 The predicate P(x) given by "x is the coding for a line

segment" is context-free and not regular.

Proof: The predicate P is given by {A(n)A(m)In # m). The

following context-free grammar will generate these strings and no others:

G <VN, VT, P, S', where VN (5, S1, S2, S3), VT .11 (A, '1,

23

and where P is given by

1) S 4 AS'
5) S2 4 'A'

2) S1 4 'S1 6) S 4 AS
3

3) S1 4 'S2 7) S
3

-I. S
3

'

4) S2 4 'S2'
A) S3 4 S2'

Rules 1-5 will generate strings of the form A(n)A(m) with n > m > 1

and rules 4-8 will generate similar strings with m > n > 1. The form

of the rules shows that C is context-free.

This predicate cannot be regular because the memory limitations of

a finite automaton fail to guarantee that n and m will be distinct

integers for sufficiently large values of n and m.

This theorem illustrates a problem which we will deal with at some

length, a problem which causes even the simplest imaginable predicate,

short of the "empty" predicate, to fail to be regular. The difficulty

lies in counting and comparing the number of primes occurring after an

"A" in a coding. Simply put, a finite automaton cannot tell one vertex

from another, unless a bound is placed on the vertex superscripts. This

limitation is combinatorial rather than geometric, and we suggest one

way of overcoming it:

Definition 3.6. An initial coding c is an element of C in which the

only vertices appearing are A(1), A(2), ... A(n), where n is the number

of distinct vertices present in the coded figure. If P is a predicate

of codings, then PI will be the predicate consisting of all codings in

P which are initial. In particular, CI is the set of all initial

codings.

24

This definition reflects the natural way a person would assign

vertex-labels to a figure, starting with A(1) rather than with A(1703).

Using initial codings, a line segment would have only two distinct

representations, A'A" and A"A'. Notice that for any coding c there

is an initial coding which is equivalent to it, and furthermore, that

we can speak of initial codings, but not of initial strings in general.

We will discuss initial and non-initial predicates in parallel until

the two notions can be shown to converge.

We now prove some results about the predicates which are recog-

nisable by finite automata.

Theorem 3.7 Let c be any coding and let PI(x) be the predicate given

by "x is an initial coding which is equivalent to c". Then PI(x)

is regular.

Proof: Immediate since there are only a finite number of initial

codings which are equivalent to a given coding, and any finite language

is regular.

As an example of such a predicate, consider the set of all initial

codings for triangles. One such coding is A'A"#A"A"'#A"'A'. There

are seven other ways to order the vertices within each line segment and

six ways of ordering the lines, giving 48 distinct codings, each of

which is initial and equivalent to the first.

It is easily proved that regular languages are closed under the

set operations of union, intersection and complementation. As a result,

initial predicates like the following are also regular:

1) x is not a triangle,

25

2) x is either a line or a quadrilateral,

3) x is neither a triangle nor a quadrilateral.

Note that the predicate P
I
(x) given by "x is not an inital coding

equivalent to c" is satisfied not only by codings which are not inital

and by codings which are initial but not equivalent to c, but also by

strings in V which are not codings. Thus the complement of a language

must be taken with respect to V* and not C. or C
I.

In fact, it will

be shown later that the predicate Pi(x) mentioned above will not be

regular in any case, for any coding c. This illustrates the result of

taking complements with respect to C , instead of V*.

We now examine the (non-initial) predicate T(x) given by "x is a

triangle". In view of our previous results, we might expect T to be

context-free; surprisingly, this is not the case.

Theorem 3.8 The predicate T(x) given by "x is a triangle" is context-

sensitive and not context-free.

Proof: We will not give a proof of the second half of the theorem;

similar languages are proved to be non-context-free in Ginsburg

[p. 88 ff. }. However, the techniques required for this proof will be

used later in this section. To show that T is context-sensitive, we

give a complete grammar which will generate all and only codings for

triangles. It should demonstrate the complexities involved in handling

a simple, non-initial predicate. We use the notation:

X + A/B for X + A and X + B,

X(A,B) + Y for XA + Y and XB Y, and

X(A,B) + (A,B)X for XA AX and XB 4 BX.

The production rules are as follows:

26

S + QiCiBiT

T + L L L /L L L /L L L /L L L /L L L /L L L
1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1

I L
1
+ XY/YX

L2 + XZ/ZX

L
3
+ YZ/ZY

B
1
+ B

1
B
1

II C
1
+ C

1
C
1

III

Q1 Q1D1

Bi(X,Y,',#) + (X,Y,',#)Bi for i = 1, 2

B1Z + Z'82

B
2
Z + Z'

+ (X,',#)Ci for i = 1, 2, 3, 4

IV Ci(Y,Z) + (Y',Z')C1.4.1 for i = 1, 2,

C4(Y,Z) + (Y',ZI)

3

Di(',#) + (',#)Di for i = 1, 2, 3, 4, 5, 6

V D (X,Y,Z) + (X',Y1,Z')D
1+1

for i =

D
6
(X,Y,Z) + (X',Y',Z')

1, 2, 3, 4, 5

Qi(X,Y,Z) + A'Qi.+1 for i = 1, 2, 3, 4, 5

VI Qi(',#) + (',#)Qi for i = 1, 2, 3, 4, 5

Q6(X,Y,Z) A'

(Total: 104 rules)

It can be seen from the rules that VN = (S, T, L1, L2, L3, Bi, R2,

C1, C2, C3, C4, Di, D2, D3, D4, D5, D6, Q1, 02, Q3, 04, Q5, Q6, X, Y, Z).

The rules in groups I and II are used to select one of the 48 possible

orderings of line segments and vertices in the coding of a triangle

and then to generate the proper number of primes for each vertex. The

rules in groups III, IV and V shift these primes to the immediate

2 7

right of the appropriate vertex symbols. The last group of rules forces

the complete application of all previous rules before generating the

final terminal string.

Note that the preceding grammar can be generalized to produce all

codings of n-gons for a fixed value of n, and hence this predicate is

also context-sensitive.

Theorem 3.9 (I, and C
I

are context-sensitive languages.

Proof: The suggestion to use LBA's in this proof was originally

due to R. Roskies. The plan is to enter a string of symbols from the

alphabet V = {A, #, '} as input to a suitably defined LBA. To ensure

that the tape head does not leave that portion of the tape which

contains the input string, it is customary to surround the input with

end-markers, c on the left and $ on the right. The LBA will proceed

through a series of tests on the input, each of which will leave the

input string unchanged upon completion. The tests we have in mind

are these:

1) check that each maximal substring of the input containing

no irs satisfies the definition of a line segment,

2) check that no pair of such line segments has more than one

vertex in common,

3) check that each vertex occurs either as an endpoint of a

line segment or at least twice in the coding.

In the case of C, I we make an additional test:

4) check that the only vertices which occur, are A(1), A(2), ...

A(n) for some n.

28

We now give an explicit program which performs the first task. This

will illustrate the technique involved and indicate that an LBA is

adequate to perform such tasks.

Routine R1

The transition function is:

R1 checks that the input, that is,qo A ql A R

ql q2 R

q2 q2 R

q2 A q3 A R

q3 q4 R

g4 g4 R

q4 A q3 A R

g4 # go #

q4
$

q5
$ L

q5 a q5 a L

q5 C q6 C R

where a stands for any

symbol except C. The

start state and the final

state are qo and q6,

respectively.

Routine R2

The transition function is:

qo A ql A R

ql ql R

ql A q2 A L

q2 q3 X R

the tape between the C and the $,

is in the proper form: that it

starts with an A, ends with a ',

has at least one ' after each A,

has at least two A's between each

pair of #'s and between the c and

the first # and also between the last

and the $, and that each # is

followed by an A. The tape'head will

start and end at the leftmost square

of the input.

R2 starts at the leftmost A in the

first line segment and checks that

no other vertex in the same line

segment has the same number of '

q3 A q4 A R

q4 ' q5 Y L

15 Y q5 Y L

q5 A q5 A L

q5 ' q5 ' L

q5 X q6 X L

q6 X q6 X L

q6 q7 X R

q7 X q7 X R

q7 A q7 A R

q7
7

R

q7 Y q8 Y R

g8 Y q8 Y R

q8 q5 Y L

q6 A (19 A R

q9 X q9 X R

q9 A qlo A R

q10 q10

q10 A q10 A R

q10 Y q11 Y R

q11 Y q11 Y R

gll q12 R

q12 q12 R

q12 A
q13

A R

q8 A q13 A R

29

symbols following it. If such is the

case, the second vertex is similarly

tested, and so on. When every vertex

in the first line segment has been

tested, the LBA proceeds to the

second and succeeding line segments.

q13 q14 Y L

q14 q14 L

q14 A q14 A L

q14 Y q15 L

q14 X q15 X L

q15 X q15 ' L

q15 A q16 A R

q16 A q16 A R

q16 q16 R

q16 X q16 X R

916 Y 95 Y L

q
12

q
17

L

q12 $ q17 $ L

q17 A q17 A L

'17 q17 L

q17 Y
a
'17

L

q17 X q18 ' L

'118 X q18 L

n 0

'18
q
19

' R

30

q18 q19A A R

. R
st19 q19

q19 A ql
A R

q8 $ q17 $ L

q8 q17 L

ql
q
o

R

ql
$ q

20
L

q20 A q20 A L

q20 q20 L

q20 I q20 I L

q20 C q21 C R

The start state and the

final state are qo and q21,

respectively.

The second test uses the techniques employed in R2 above: the

automaton proceeds through each pair of line segments comparing all

vertices, one from each line segment, and halting in a non-final state

if a pair of line segments have more than one vertex in common.

The third test is almost identical with the second, except that

it is necessary to check for duplication only those vertices which do

not occur as endpoints, and they milt be checked against all vertices

which occur.

The foulth test breaks into two parts: first, the longest string

of primes is located and replaced with X's. Then the input is checked

for a string of primes which is exactly one symbol shorter than the

31

string of X's. If one is found, we replace one X with a ' and repeat

the test until only one X remains. The LBA then replaces this X with

a and halts in a final state.

The following theorem (3.11) will be of fundamental importance

when discussing the limitations of formal languages in geometric

applications. However, we first state a result which provides a

partial characterization of context-free languages, due originally to

Bar-Hillel, Perles and Shamir. It is referred to variously as the

"uvwxy" theorem in Hoperoft and Ullman (p. 57) and the "xuwvy" lemma

in Ginsburg (p. 84).4

Lemma 3.10 Let of be a context-free language. Then there exist

integers p and q with the property that any z c X with IzI > p can

be written as z uvwxy where Ivwx1 < q, either v 0 e or x 0 e, and

where zi uviwxiy c Je for each integer i > 0.

Theorem 3.11 ("Star" Theorem) For n > 1, let ST(n) be the coding for

an (n-1)-pointed "star" figure, A(1)A(2)#A(1)A(3)# #A(1)A(n). Let

P be any predicate of codings which contains ST(n) for infinitely many

n. Then P cannot be context-free.

Proof: Let P be any such predicate of codings, that is, PcC

and ST(n) c P for infinitely many n, and suppose that P is context-free.

We can clearly select an n > 0 and a z ST(n) c P such that IzI > p,

where p is determined by P as in the lemma. Hence z uvwxy. We shall

4The "uvwxy" theorem provides a necessary condition for context-free
languages, but it is not known whether the condition is also sufficient.

32

examine v (or x if v e).

First, since v can be assumed to be non-empty, suppose v contains

an occurrence of the symbol #, that is, v a#0, where a and B c V* (and

possibly one or both is empty). Then vi afi3a#Ba# ... 00 a(#Ba)i-l#B.

If a and a are both empty, then zi uviwxiy will contain a repetition

of the # symbol i times, and if either a or B is non-empty, zi will

contain i-1 repetitions of #ft. Either way, even if fla should be a

well - formed line segment, zi will not be a well-formed coding, regardless

of what wxy looks like. Thus v cannot contain #.

Now suppose that v contains the symbol A. If so, then v is A'A(') j,

1A(')J, or A(')J for some integer j > 0. Hence vi will be A'A(j)A'A(j)

A'A(j), 'A(j+1)i-IA(j), or A(j)i. None of these substrings can

occur in a coding, since each represents a repetition of vertices within

a line segment. Thus v cannot contain the symbol A.

Hence v must be a string of ' symbols. Suppose v consists of all

the ' symbols following some occurrence of an A in z. Unless wxy e, a

possibility we can avoid by taking n > q+1, then v is bounded on the left

by an A and on the right by either an A or a #. By lemma 3.10, zo uwy

c P. But uwy will have an occurrence of either an AA or an A#, neither

of which can occur in a proper coding.

Therefore, v is a string of k k 1 ' symbols, which occurs in a line

segment A'A(n) in z, where n > k. In zo uwy, this line segment becomes

A'A(n-k) if n-k > 1, or it becomes A'A': in the first case, it duplicates

a line segment occurring to the left of A'A(n), in the second it becomes

ill-formed. The occurrence of x, if x 0 e, will not affect the argument,

since it is to the right of v. Thus we see that z cannot be represented

in such a way that zi c P for each i a 0; hence P is not context-free.

33

Corollary 3.12 Neither C nor CI is context-free.

Proof: Clearly ST(n) c CI 57 (I, for all integers n > 1.

Theorem 3.9 and Corollary 3.12 characterize the two methods of

coding geometric figures. Using these results we can now demonstrate

the convergence of these two methods at the context-sensitive level.

Corollary 3.13 Part I Let P be any predicate of codings, that is,

P S C., which is context-sensitive. Then the corresponding initial

predicate P
I

is also context-sensitive.

Part II Conversely, let PI be any predicate of initial codings,

that is, PI CI, which is context-sensitive and which is invariant

under coding equivalence: if x c el and y c C.1 and x E y, then

Pi(x) if and only if Pi(y). Then the extension of PI to non-initial

codings, defined by P(x) if and only if for some y, x E y and PI(y),

will also be context-sensitive.

Proof, Part I: To convert from P to P
I
we need only add an

additional test to the routines used in the testing of P, namely a

verification that the input is initial, which in Theorem 3.9 was seen

to be context-sensitive.

Part II: Let P and P
/

satisfy the hypotheses of Part II of the

corollary. To determine if P(x) holds, we first check that x is a coding,

then we transform x into an equivalent initial coding y and check

whether P(y) holds. The first and last of these tests are known already

to be within the scope of some LBA, so we need only show that an LBA can

transform a given coding into an equivalent initial one. Note that we

can always find an equivalent initial coding whose length is not greater

34

than that of the original coding; it is not true that an initial

coding is always no longer than a non-initial equivalent coding.

We can define the LBA which converts a coding to an initial one

as follows: we first locate the shortest string of ' symbols in the

input and replace it with a single temporary prime-marker M followed

by enough N symbols to fill out the string. Then the rest of the

input is scanned for strings of ' symbols having the same length,

which are treated similarly. Then the next longest strings of ' symbols

are located and replaced by two M's followed by N's, and so on. When the

process is complete, the N's will be eliminated and the M's will become

' symbols again. The effect is to convert the vertex of lowest index

into an A(1), the vertex of next lowest index into an A(2), and so on.

It is clear that such a process can be carried out within the given

amount of tape.

An interesting question is whether the preceding corollary holds

when "context-sensitive" is replaced throughout by "context-free" or

"regular". Obviously Part II will fail under either replacement. The

predicate Ti(x) given by "x is an initial coding for a triangle" is

regular (Theorem 3.7) and hence also context-free, but T(x), the

extension of T
I
(x) to non-initial codings, is neither regular nor context-

free (Theorem 3.8).

Part I of the Corollary is problematic in that we have virtually

no examples of non-initial predicates of codings which are regular and

only One which is context-free (Theorem 3.5). For this one example,

Part I certainly holds, but for now we will leave the question open, for

the reason that an answer to it will not be likely to have any application

35

to the kind of predicates we are discussing here.

We conclude this section with some results about previously-

mentioned predicates.

Theorem 3.14 The predicate K(x) given by "x is the coding of a connected

figure" is context-sensitive and not context-free.

Proof: The simple and obvious technique for handling connectedness

with an LBA is this: we first check that the input is a proper coding

and then mark with a new symbol X each of the vertices in the first line

segment. Then we iterate two routines until no change results: the

first is to mark with an X each additional occurrence of vertices already

so marked, and the second is to mark with X's each vertex occurring in

a line segment which contains an X-marked vertex. This will identify

those vertices which are connected to the first vertex. If all vertices

are marked at the end of the process, then the figure is connected.

That K is not context-free is a consequence of the "Star" Theorem.

Theorem 3.15 Let c e C. and let P(x) be the predicate "x e C. and

x c". Then both P and P
I

are context-sensitive and not context-free.

Proof: Neither P nor PI is context-free, for the "Star" Theorem

applies to each, even if c - ST(n) for some n > 1.

An LBA to recognise elements of P or PI would first determine

whether or not the input is a coding and in the case of PI whether or

not it is initial. Since there are a finite number of initial codings

equivalent to c, the LBA would then transform its input to an initial

coding if it is not already and compare the result with each of the

possible initial codings.

36

In view of Theorem 3.15, we might ask whether the complement of any

context-sensitive predicate remains context-sensitive when taken with

respect to C. The answer is that we simply do not know at this point,

for this question seems to be a special case of the larger problem of

whether the class of context-sensitive languages is closed under

complementation. An affirmative answer to this will imply that the

class of languages accepted by deterministic LBA's is the same as that

accepted by nondeterministic LBA's.

One last predicate which was mentioned earlier is the "figure in

context" predicate, an example being "x contains a triangle". We can

tell if a given figure contains another as a subfigure by a correct

succession of vertex deletions, removing the lines connecting each

vertex at the same time. On the level of codings, the process would

work like this: if c is a coding and A(n) is a vertex in c, we can

obtain a new coding c' from c by first deleting every occurrence of

A(n) in c, then deleting any vertex A(m) which had occurred as the only

other vertex on a line segment A(n)A(m) or A(m)A(n) in the original

coding c, but deleting only those occurrences of A(m) which are as just

described. Last, each time we delete a vertex A(m) we must also remove

one of the I symbols which had been adjacent to it. For example,

suppose we wish to remove vertex A(3) in the following figure:

A(2)

Figure 1

A(4)

37

A coding for this figure would be:

A(1)A(5)A(2)#A(5)A(3)A(4)#A(1)A(3)#A(2)A(3)#A(1)A(4)#A(2)A(4).

To delete vertex A(3) we first remove each occurrence of A(3):

A(1)A(5)A(2)#A(5)A(4)#A(1)#A(2)#A(1)A(4)#A(2)A(4),

then we delete the occurrences of A(1) and A(2) in the third and fourth

line segments respectively, together with one of the I symbols for each:

A(1)A(5)A(2),A(5)A(4)#A(1)A(4)#A(2)A(4).

The resulting coding represents the following figure:

Figure 2

A(4)

Thus if F is a figure, we can recognise F within the context of

another figure by some succession of such deletions.

Theorem 3.16 The predicate PF(x) given by "x contains F as a subfigure"

is context-sensitive.

Proof: We can design an LBA which takes an input string, checks

to determine if it represents a coding, and then converts the coding

symbol by symbol to ordered pairs: A becomes (A,A), becomes (1,t)

and I becomes (CO. Then the LBA tries successive deletions of vertices

writing the result in the second coordinate of these ordered pairs, and

replacing each deleted symbol by a null symbol N. After each deletion,

a new coding would be initialized and compared with each of the

finitely many initial codings for F. When a particular succession of

deletions fails to find a coding for F, the original coding is rewritten

into the second coordinates, and the process starts again. The LBA halts

38

in a final state only when a coding for F is found.

Corollary 3.17 The predicate "x is a TNP coding" is context-sensitive.

Proof: We use Kuratowski's theorem and the preceding result to

locate one of the two "forbidden" subcodings within the given coding. If

one or both is found, the coding is TNP.

The foregoing results amply suggest that context-sensitive

languages play the central role in characterizing those types of

geometric properties under discussion here. Even with the restricted

amount of "geometry" available to us, the full power of context-sensi-

tivity was necessary to handle all but the simplest figure-classes,

and we feel that there is every reason to believe that similar invest-

igations will reach much the same conclusions.

The disturbing aspect of this study is that linguistics as it is

applied to the study of natural languages, centers upon the context-free

property; in fact, Ginsburg refers to languages which are not context-

free as "non-languages". Thus much linguistic analysis cannot be

extended to include geometry, even in the simple formulation presented

here. Among the implications of this fact we can mention the non-

existence of derivation trees for codings and the impossibility of

left-to-right generation of terminal symbols in codings, both of which

are used in the analysis of natural languages.

39

SECTION 4: INVARIANCE THEOREMS

Many of the results in the preceding section seem to depend

heavily upon the choice of coding procedure employed: it is natural

to ask whether some other method of coding figures would have given

more optimistic results. The theorems in this section will help to

generalize the results in Section 3 to a larger class of coding

procedures.

Definition 4.1 A finite automaton with output (FAO) is a quintuple

<K, E, A, go, 6> in which

1) K is a finite, non-empty set (the set of states),

2) E and A are finite non-empty sets (the input and output

alphabets, respectively),

3) qo c K (the start state), and

4) 6: K x E -01(xA(the transition function).

An FAO operates like a finite automaton except that instead of

accepting or rejecting an input string, it generates a new string of

symbols, of length equal to the length of the input string. Thus we can

think of an FAO as a function from E* to A*. We will define a non-det-

erministic FAO analogously, except that we now allow 6: K x E

G(K x E) - (0, the set of non-empty subsets of K x E. When ais in

a state q and scanning a symbol v c E, the range of possible moves for 51-

is any (q',w) c 6(q,v). If a is an input string, we will let 2f(a)

denote the set of all output strings which can be generated from a by

the NDFAO 3% We shall think of deterministic FAO's as special cases

40

of NDFAO's, so that many theorems about the latter will apply a fortiori

to the former.

As an example of an FAO, consider 4 . <{g0}, (A, ', #}, (0, 1),

go, 6>, where 6 is defined:

6(g0,A) (clo'°)

6(clo'') -

6(q0, #) - (clo9°)

If the string A'All#A"A'''#A'''A' is used as input for 1, the output

is 01011001101110011101. The effect is to transform a coding in the

sense used in Section 3 into one of the similar codings mentioned on

page 20.

Definition 4.2 Let Z and it be languages over the alphabets W and W'

respectively. Then a.' is a regular transform of Z in case there is

a NDFAO SI" such that at.' is the image of X under denoted J!'

1-(X). When X is a specified language and 1 is a NDFAO whose input

alphabet includes the alphabet of X, we will call l(X) the regular

transform of X under 1.

We have defined a regular transform with respect to the most general

type of FAO, namely, non-deterministic, and this much generality may not

always be necessary. Clearly the case which is most interesting is when

the FAO relating two languages is not merely deterministic, but one-to-one

as well. The reason for the definition as it stands, is that it will be

useful to be able to define the inverse of an FAO which would not in

general be an FAO unless the original FAO were supposed to be one-to-one.

Note that even when NDFAO's are employed, the image of a finite language

41

is finite and the image of an infinite language is infinite.

Remark: If 414' is a regular transform of %, st may not be a regular

transform of At', even if the FAO is deterministic and one-to-one on

Jt. For example, let X= {anbnin > 0). its context-free and not

regular. Let 1= < {q0 }, {a, b }, {1}, go, 6>, where 6 is given by

6(q0,a) = (etc:01) and 6(q0,b) = (q0,1). Then Pipe) Je.' {1"In is an

even positive integer}, and off' is regular. By the following theorem,

X cannot be a regular transform of Z.

Theorem 4.3 If 4 is regular and A!' is a regular transform of it, then

t' is regular.

Proof: Let G = <VN, V
T,

P, S> be a regular grammar for At and let

the NDFAO be .1 = <K, VT, W, go, 6> where At' s W* and 5(4) =t'.

Define a new grammar G' = <VN X K, W, P', (S,q0)> where the rules in P'

are specified as follows:

If A - vB is a rule in P, then for every q e K, P' will contain

all the rules (A,q) v(1300 where (q',w) e 6(q,v).

If A - v is a rule in P, then for every q c K, P' will contain

the rules (A,q) w where for some q' e K, (q',w) e 8(q,v).

Now we prove that 4t,' = L(G'). Let a e Je. where a = we/2 wo. Since

a e there is a B e at, B = viv2 vo, such that a e g(0). G

generates 4 so we have a sequence of rules in P: S v1S1, S1 v2S2,

Sn-1 vn . Also since a e 1(0), we have in K a' sequence of states

go, ... qo such that (q0,v1) (q1,w1), (q1,v2) (q2,w2), (cin-i'vn)

(qwwn), that is, (qi,wi) e 6(qi_rvi) for i = 1, 2, ... n. Hence in

P' we have a sequence of rules (S,q0) wi(Si,g1), (S1,q1) w2(S2,q2),

42

(Sn_pqn_l) 4 wo, Thus a = w
1
w
2

w
n

L(G').

Conversely, let a c L(G'), a - w1w2... wn. Then there is in P' a

sequence of rules (S,q0) i wi(S1,q1), (S101) w (S
)

wn. Hence we have for some sequence of vi's in VT that (qi,w1) c

6(clo,171), (c12,w2) 6(g10/2)' "' (cin'wa) 4 6(qn-1 ,vn). Hence there is

in P a sequence for rules S 4 ViSl, S1 4 v2S2, Sn...1 4 vn. Thus B -

vIv2 vn c 04 and a c '5(0). So a c

Thus we have proved that ;It" g L(G') and L(G') 1; Al', so the two

are equal.

Theorem 4.4 If X is context-free and r is a regular transform of X,

then t' is context-free.

Proof: Let X V
*

, let G - <VN, V, P, S> be a context-free

grammar for df, and let 14.= <K, V, W, go, 6> be a NDFAO mapping tto

where 1!.s4171 W. We may assume that the rules in P are in Chomsky

normal form, that is, each rule is of the form A 4 BC or A v, where

A, B, C c VN and v c V. For each A c VN and q c K define Ck(A,q) =

{q' c KIA G* a for some a c V* and (q,w)c 6*(qi,a) for some w

where by (5* we mean the natural extension of d to strings [see p. 15].

Intuitively Gt(A,q) is the set of all states in K which are in a sense

"final" states when 6 is applied to a string a with q as start state,

where a is some terminal string generated from the variable A. Thus

a(S,q0) would be the set of "final" states for strings in X. Notice

that if A is a variable in VN which occurs in at least one derivation in G

then A 4
G
* a for some a c V*, and hence 6t(A,q) is non-empty for such

variables.

43

Define a grammar G' <VN x K, W, P', (S,q0)) where the rules in

P' are specified as follows:

1) If A + BC is in P then we will include in P' each rule of the

form (A,q) 4 (B,q)(C,q') where q is any element of K and q'

E a(B,q).

2) If A + v is in P then we will include in P' all rules of the

form (A,q) w where for some q' c K, (q' ,w) c 6(q,v).

Notice that G' is a context-free grammar.

Part I: Let B = w1w2 wn c There is an a = v1v2 vn c

with B c Y(a) and hence in K we have elements go, gl, qn such that

(gyn.) c 6(110,v1), (g2,w2) c 6(q1,v2), (qn,wn) c gqn_pvn). Let

D be a derivation of a in G, arranged so that all rules of the form

A + BC precede rules of the form A 4 v. Thus S
*

A1A2 ... An for some

sequence of variables in VN, such that Ai + vi is in P for i = 1, 2, n.

We will establish that(S,q0) -0* (A1,g0)(A2,q1) ... (An ,gn_i) in G'.

Certainly for some sequence ro, r1, rn in K we have (S,g0)

(A1,r0)(A2,r1)...(An,rn_l), since each rule A BC used in the

derivation of A1A2 ... An has counterparts in P' of the form (A,q)

(B,q)(C,q') for all q c K and for q' c a(B,q), since O(B,q) is non-

empty. Thus the derivation S +G* A1A2 ... An can be duplicated in G'.

We will use induction to prove that it is possible for ro = go, r1 = ql,

mn-1 qn-1'

First note that ro = go as a result of the construction of the rules:

the second component of the leftmost variable in any derivation in G' of

a non+terminal string from (S,g0) must be go.

Now suppose the result to be true for i-1, that is, that (S,g0) 4*

(A1,q0)(A2,q1) (Apqi_1)(Ai+1,ri) (A,rn_i) in G'. In the

44

derivation tree of a, locate the least upper bound X of the variables

Ai and Ai4.1. Then for variables Y and Z in VN we have that X YZ is

in P; that either Y = Ai or for some j (1 < j < i) Y 4.* AjAj.1.1 ... Ai:

and that either Z = Ai +1 or for some k,(i+1 < k 5 n) Z
*

Ai.1.1Ai+2

Ak. In we have the rules (X,q) (Y,q)(Z,q') for each q c K and

q' c 4.(Y,q), and in particular (X,qj..1) (Y,qj_1)(Z,q') where q' c

61.(Y,qj_1). Furthermore notice that since Y vjvi.1.1 vi in G and

(qi,wi) c vi), we must have qi c 11(Y,qj_1), and

therefore (X,qj_i) (Y,qj_1)(Z,qi) is in P'.

Notice now that by induction (X,qj...1) must occur as a variable in

the derivation of (A1,q0)(A2,q1) (Acqi_1)(Ai.1.1,ri) (An,r)
-n-1'

and hence it is possible for ri = qi. Thus the induction step is

complete and (S,q0) 4.* (A1,q0)(A2
,q1) (An,qn-1).

It remains to show that (Al,qi_i) wi is in P' for i = 1, 2, ... n,

but this follows from the fact that Ai vi is in P and (qi,wi) c

6(qi_1,vi). Thus B c L(G').

Part II: Now let B = w1w2 wn c L(G'). In G' we have a derivation

(S,q0) 4.* (A1,q0)(A2,q1) (An,qn_i) and rules (Apqi_i) wi for i =

1, 2, ... n. Each rule in P' of the form (A,q) (B,q)(C,q') corresponds

to a unique rule in P, A BC, so in G we have S * A1A2 ... An. In

addition the rules (Ai"a -1
) w

i
correspond to rules A

i
v
i

in P,

where each vi is such that (qi,wi) c d(qi_l,vi). Thus we have S
*

a =

v1v2 vn in G. So a c X., and B c 9.(a) since (q1,w1) c d(qcovi),

(q2'w2) c (gn'wn) c "cin-l'vn)*
So a c

Parts I and II show that L(G') both contains and is contained in

hence L(G') = X' and X.' is context-free.

45

Theorem 4.5 Let ee be context-sensitive and X' be a regular transform

of oY. Then is context-sensitive.

Proof: Let .5.1 <K, V, W, go, 6> be a NDFAO which maps ;it onto

X', where X V* and X: g W. We define a special three-track LBA T

to recognise words in T will accept a word B = wiw2 wn E W
*

as

input and change each symbol wi E B to a triple (wi, 0, 0). If B E

then there is an a = viv2 vn such that $ E 3(a): T will find a as

follows: first T generates nondeterministically a string a c V* with

la(= n, and stores a symbol by symbol in the blank second coordinates of

the input. Then T applies 6 to a nondeterministically, generating

elements of ,5(a) and storing each in turn in the third coordinate space

of the input. When an element of 1(a) is found which equals B, T will

then test a to determine whether a c X, using the fact that ;Cis context-

sensitive. If not, T will discard a and start over with another a' c V*

with la'l = n. T will halt in a final state when an element A of xis
found with B e .1(A). At each point in the test to determine whether a

particular a c V
*
belongs to X, T can nondeterministically exit and

begin computation over again with a (possibly) different value for a. This

will prevent T from becoming bogged down in computations for an incorrect

value of a.

Corollary 4.6 If X is Type 0 and X.' is a regular transform of X,

then is also Type O.

Proof: The technique employed in Theorem 4.5 generalizes to Turing

machthes, which may need more computing space to determine whether a c X,

but otherwise work the same.

46

One major limitation of regular transforms would seem to be the

fact that the length of the output string must equal that of the inp'it

string. There are tricks however which can help overcome this problem

in some special cases. Suppose our coding procedure had been this: the

nth vertex is coded by lh; 0 is a vertex-delimitation symbol; # is a

line-delimitation symbol. The triangle

A(1)A(3)#A(4)A(1)#A(3)A(4)

would be coded

* * 101101111011111101111.

The number of symbols in * is 24, the number in ** is 21. If we modify

the second coding procedure slightly, we can make the number of symbols

in a "new" coding correspond to the number of symbols in the original.

Suppose we consider the "new" coding to be over the alphabet {0, 1, 11, S },

where S is a new symbol, and the procedure is modified so that each

coding starts with an S and the lines are now delimited with ## instead

of # as before:

*** S10111##111101,i11101111.

It is easily seen that this procedure results in codings which have

the same length as codings in *, relative to the choice of vertex-labels.

If the change is not objectionable, we now have a coding procedure which

is a regular transform of our original one. The FAO which accomplishes

this is given by:

lag ql, q2), {A, ', #}, {S, 0, 1, #}, go, d> where

6 is defined by

6(A,q0) = (S,qi)

6('01) °I (101)

6(A,qi) = (0,qi)

6(#01) (#,q2)

6(A,q2) = (#,q1)

47

We can use similar tricks to "shrink" or "stretch" the output

string, but a better way is to generalize our definition of regular

transform to include the case where a NDFAO can output a finite number

of symbols and possibly the empty symbol at each step, instead of

exactly one symbol. The appropriate definitions are these:

Definition 4.7 A generalized NDFAO (GFAO)5 is a quintuple 1= <K,

E, A, go, 8> where

1) K, E, and A are finite non-empty sets,

2) qo c K,

3) 8 is a function from K x E to non-empty finite subsets of

K x E*.

Definition 4.8 If X. V* and t' = 5.(X) for some GFAO 11, then

of is called a generalized regular transform (GRT) of X.

Theorem 4.9 The GRT of a regular (context-free) language is regular

(context-free).

Proof: Let X. be regular and let G be a regular grammar for X.

We can find a grammar G' for AV as we did in the proof of Theorem 4.3:

the rules in P' will now be of the form A aB and A a, where A and B

are variables of G' and a c te, possibly a = e. To show that ;Cis

5These definitions and the following theorems were discovered to be
minor variations of what is known in the literature as a generalized
sequential machine and similar results for so-called "gsm mappings" can
be found in Hoperoft and Ullman (pp. 128-130]. However, the results
given here were developed independently as extensions of the notion of
a regular transform and the proofs in this paper are in no way related
to the proofs in Hoperoft and Ullman. We include these results for
completeness.

48

regular we will replace the rules in P' with new equivalent ones.

First, if A 4 aB is in P' for some a v1v2 v
n
where n > 1,

we delete this rule and add new ones A 4 v1X1, X1 -* v2X2, Xn_i vnB,

where X1, X2, ... Xn...1 are new variables added to G'. Thus we can delete

all such rules A 4 aB and similarly all rules A 4 a, where Pal > 1.

Second, any rule of the form A 4. eA can be dropped without replace-

ment, even if the rule is S eS, since such rules have no effect on a

derivation. If A 0 S and the rule A 4. eB occurs in P' for some B , A,

it too can be deleted, provided every occurrence of A in the remaining

rules is replaced by B. It should be clear that if S w1w2 wn in

G' before these changes and A occurs in this derivation, then all

instances of A's in the derivation are replaced by B's and the derivation

still holds. Cycles of such rules A 4. eB, B eC, C eA, and so on will

cause no difficulties. If rules of the form S eB occur, they can be

deleted similarly, with B becoming the new start symbol.

All the remaining rules are of the form A 4 vB, A 4 v, or A 4 e.

Any rule A + e, where A is a variable which never appears on the right-

hand side of some other rule, can be dropped, since such a rule can never

occur in a derivation; the rule S e can be allowed to remain. If

A 4 e is a rule in P' and A does appear on the right-hand side of some

other rule B vA, we can delete A 4 e from P' and add B V.

These changes in production rules clearly give a regular grammar,

and one which is equivalent to G'. Thus X.' is regular.

The proof for context-free languages is similar. The rules we will

obtain using the technique in Theorem 4.4 will have the form A 4. BC or

A 4. a, which are context-free rules, with the exception of the rules

A 4. e. Hoperoft and Ullman prove [pp. 62-631 that these so-called e-rules

49

can be added to context-free grammars without destroying the context-

free property.

Theorem 4.10 Let et be context-sensitive, let I be a GFAO, and let

:(C). Then ,t1 will be context-sensitive, provided the following

condition is met: there is an integer n > 0 such that whenever a c 44.1,

there is a B c a: such that a c 1(0) and 161 < n$uI.

Proof: The condition amounts to a linear bound on possible pre-

images for words in An LPA which recognises words in st.' would

operate in a manner similar to that described in the proof of Theorem

4.5, except that all words must be checked having length up to n times

the length of the input.

Corollary 4.11 The GRT of a Type 0 language is Type 0.

Proof: The method employed in Corollary 4.6 generalizes to CRT's.

These theorems indicate that the tricks used on p. 46 are not

necessary to deal with various coding procedures which are similar to

that used in Section 3. For example, to transform

A'A"'fA""A'OA"'A""

into

10111#111101#11101111

we can use a GFAO whose transition function is defined by

6(q0,A) (9pe)

6(91,') (91,1)

0(91,A) (q1,0)

6((11,#) (go,')

50

Notice that the linear bound requirement imposed by Theorem 4.10 is

met, with n 2. A GFAO which "reverses" the above example would have

transition function 6' defined by

6'(94501) (g14'')

6'(81+1) (q1,')

"110) is (q14')

6'(g14) s (q06)

For the results in Section 3 to apply fully to a new coding method,

we must have a CRT of the original language into the new one and con-

versely. We have already seen that the CRT of a non-regular language

is not necessarily non-regular. However the existence of the two CFAO's

mentioned above is sufficient to prove the following:

Theorem 4.12 All theorems proved in Section 3 remain true when our

original coding procedure is replaced with the procedure described in

** on p. 46.

51

SECTION 5: FURTHER INVESTIGATIONS

The most important remaining problem is that mentioned at the end

of Section 1, namely the identification or characterization of the class

of geometrically non-planar figures. Of course a simple linguistic

characterization for this class would be ideal, but this is perhaps more

than we can reasonably expect. As one sees in Section 3, it becomes

more apparent that, as Type 1 and even Type 0 languages begin to play

the central role, there is a shift from linguistics to a more mechanical

or computational aspect. In this sense, then, a linguistic treatment may

not be entirely satisfactory. The following theorems are an illustration.

Theorem 5.1 The set of planar codings is recursively enumerable, that

is, the language of planar codings is Type O.

Proof: We will describe a procedure for checking codings which will

tell us when a coding is planar. If we are given a coding c with n

distinct vertices, we look at the set of points in the Cartesian plane

with coordinates (x,y) where x 0, 1, 2, ... n and y 0, 1, 2, n.

These points form an n x n grid. We now assign coordinates from this

set to the vertices in c, trying to find a figure which is a realization

of c. If a realization for c is found, then c is planar. If all pos-

sible ways of assigning coordinates fail to produce a realization for

A realization of c {ABC,

BADE, EV, COD, BGF} on a
6 x 6 grid.

52

c, we try an n+1 x n+1 grid. By continuing in this manner, we will

find a realization for c if one exists. If c is non-planar, this

procedure never terminates.

To see that this procedure does terminate when c is planar, we

note that if c is planar, then certainly some realization for c can be

found in the Cartesian plane, in which the vertices have rational

coordinates. This follows partly from the fact that when a line

segment has rational endpoints, then any interior point which has one

rational coordinate, has both coordinates rational. Further, we can

"shrink" this realization so that it lies within the unit square

bounded by (0,0), (0,1), (1,0), (1,1), and such that its vertices still

have rational coordinates. Let n be the least common denominator for

all these rational coordinates: that is, each coordinate can be

expressed as x/n, where 0 s x s n. Thus each vertex vi has coordinates

(xi/n,yi/n), and hence we can consider c to have a realization on an

n x it grid, where vi's coordinates are (xi,yi).

For each coding c there is an integer mc which has the property

that if no realization for the coding can be found using an mc x mc

grid, then no realization exists! the problem lies in determining

what this integer is for a general coding. If, for example, it could

be shown that there is a linear function f with the property that

f(1c1) (mc)2, then the language of planar codings would be Type 1.

Theorem 5.2 The class of GNP codings is recursive.

Proof: In 1930 Alfred Tarski gave a decision procedure which applies

to sentences in the elementary theory of Euclidean geometry, using the

53

notions of equality, betweenness and equidistance. The geometric system

used in this paper is a subsystem of Euclidean geometry, so Tarski's

algorithm will apply.6 To use the algorithm, we take a coding c and

write a sentence which expresses all equality and betweenness relations

holding for vertices in c, including statements about line segments in

c which do not intersect one another. The algorithm will transform this

into a sentence of elementary algebra involving real polynomials. The

truth of this sentence is decided using powerful techniques from real

analysis. As an example of the sentence we derive from a coding to

apply the algorithm, consider the GNP coding {ABC, AED, BD, CE} given on

p. 11. The description of this figure (coding) would be:

(8A)(313)(8C)(3D)(3E){(A0B) & (A #C) & (AOD) & (AOE) & (B #C) & (B #D)

& (B #E) & (COD) & (COE) & (DOE) & b(A,B,C) & b(A,E,D) & (yX)[b(B,X,E)

not-b(C,X,D)11.

A most promising area for further study is graph theory. Little

has been done in graph theory with straight-line graphs, but interest is

picking up, especially in connection with the four-color problem. In

1948 the graph theorist Fary proved that any planar graph7 can be real-

ized in the plane using straight lines. This means, for example, that

the coding mentioned above is realizable using straight lines, provided

the vertices B and E are no,longer considered to be interior vertices

but endpoints. Thus the coding {AB, BC, AE, ED, BD, CE} is planar. It

is worth outlining the proof of this theorem.

The proof uses induction on the number of vertices in the graph.

6We are indebted to Professor Haim Gaifman for pointing out that
Tarski's algorithm applies in this situation.

7By a "graph" we will mean a coding in which every line segment or
"edge" has length 2, and such edges need no longer be straight lines.

54

Suppose the result is true for graphs having n or fewer vertices and

assume G to be a maximal planar graph with n+1 vertices. This means that

no unconnected pair of vertices can be connected without making G non-

planar. Since any planar graph with n+1 vertices is contained within

such a maximal graph, it will suffice to find a straight-line repre-

sentation for G. An interior vertex v is selected, and the vertices

vl, v2, ... vm which are adjacent to v are located and listed in cyclic

order. We can assume m > 3. It follows from maximality that there is a

minimal path enclosing v having edges viv2, v2v3, vmvl. We can

remove vertex v together with the edges connecting it to the adjacent

vertices, and add edges viv3, viv4, vivm_i if not already present.

The resulting graph is maximal planar and has n vertices, so we can find

a straight-line representation for it. The construction of this graph

makes it possible to reinsert the vertex v inside the path viv2... vm

in such a way that v can be connected to each vi using straight-lines.8

Here is an example showing an application of the theorem:

A: Graph with
6 vertices.

B: Maximal graph
containing A.

8For.additional details, see Ore, The Four Color Problem, [pp. 5-81.

v4

55

3

C: Select and remove vertex
v and draw edge viv3.

E: Vertex v is
reinserted.

D: Straight-line
representation
for C.

F: Remove certain edges to
obtain straight-line
representation for A.

The reason for devoting so much space to this theorem and its proof

is that we can apply it to a particular grammar which generates a class

of planar straight-line graphs. We give a collection of production

rules which allow us to proceed from a given coding to a larger one;

these codings will be expressed here as sets of line segments as in

Section 1. Our starting point is S = {AB). The rules are:

1) If XY E T or YX c T and Z is a vertex not appearing in T, then

from T we derive T ki{YZ} and also from T we derive (T - {XY })

{XZ, ZY).

2) If XY E T and YZ c T then from T we can derive T V {XZ },

provided this latter coding contains neither Kuratowski

subgraph.

56

One suggestive way of visualizing these rules is the following:

our start symbol is no. " and the production rules correspond to

these:

1)

2) .60001;71r

The figure A on p.54 might be "derived" as follows:

and a corresponding sequence of codings would be:

S {AB} + {AB, BC} + {AB, BC, CA} + {AB, BC, CA, BD} + {AB, BC,

CA, BD, DA} + {AB, BC, CA, BD, DA, DE} + {AB, BC, CA, BD, DA,

DE, EA} + {AB, BC, CA, BD, DE, !A, DF, FA).

The first thing we notice about these rules is that they seem to

bear no relation to the rules of a formal grammar, which cannot be used

for set generation. This is compensated for in their intuitive clarity,

for it is true that the language which they generate is context - sensitive,

and one can only imagine how intuitive the rules for a formal grammar

57

for the same language would be. As for the class of graphs, or rather

the class of codings for graphs, which is generated, we can apply Firy's

theorem to show that any maximal planar graph can be so derived. Note

that the production rules given are specially suited to the generation

of triangles, and that any maximal planar graph is "triangulated", that

is, each face is bounded by a path of length 3 (if not, we could draw a

diagonal which bisects the face, contradicting maximality). However, it

is not possible to generate all planar graphs with these rules; here is

an example:

The last rule used in generating this graph cannot be rule 1, for this

results in a vertex of order one or two (that is, with one or two adjacent

vertices), and cannot be rule 2, for this rule completes a triangle, and

the graph contains no triangles.

The preceding example indicates the direction in which notions of

grammar and formal language must be extended for application to geometry

and similar areas. Work is currently being done on "indexed" languages,

in which the introduction of new vertex-labels in a coding can be

handled more naturally, and on "graph" grammars, which are quite similar

to the above example. Applications for such grammars are being increas-

ingly found in the areas of picture processing and pattern recognition.

Berge, Claude. The Theory
1966.

Chomsky, Noam. Aspects of
1969.

58

BIBLIOGRAPHY

of Graphs. London: Methuen & Company Ltd,

the Theory of Syntax. Cambridge: MIT Press,

Chomsky, Noam. Cartesian Linguistics. New York: Harper & Row, 1966.

Chomsky, Noam, and Miller, George A. "Introduction to the Formal Analysis
of Natural Languages," Handbook of Mathematical Psychology,
Volume II, New York: John Wiley and Sons, 1967.

Ginsburg, Seymour. The Mathematical Theory of Context-free Languages.
New York: McGraw-Hill, 1966.

Harary, Frank. Graph Theory. Reading, Massachusetts: Addison-Wesley,
196g.

Hoperoft, John E., and Ullman, Jeffrey D. Formal Languages and Their
Relation to Automata. Reading, Massachusetts: Addison-Wesley,
1969.

Minsky, Marvin, and Papert, Seymour. Perceptrons. Cambridge: MIT Press,
1969.

Ore, Oystein. Graphs and Their Uses. Singer New Mathematical Library
(New York: Random House), 1963.

Ore, Oystein. The Four Color Problem. New York: Academic Press, 1967.

Pavlidis, T. "Linear and Context-free Graph Grammars," Journal of the
Association for Computing Machinery, Vol 19, No. 1, January
1972, pp. 11-22.

Rottmayer, William Arthur. "A Formal Theory of Perception," Institute for
Mathematical Studies in the Social Sciences, Technical Report
No. 161. Stanford University, 1970.

Shaw, Alan C. "A Formal Picture Description Scheme as a Basis for Picture
Processing Systems," Information and Control, Vol 14, 1969,

Suppes, Patrick. "Stimulus-Response Theory of Finite Automata," Journal
of Mathematical Psychology, Vol 6, No. 3, 1969, pp. 327-355.

Tarski, Alfred. "A Decision Method for Elementary Algebra and Geometry,"
The RAND Corporation, 1948, Report R-109.

Tutte, W. T. "How to Draw a Graph," Proc. London Math. Soc., Vol 3,
No. 13, 1963, pp. 743-768.

(Continued From Inside front cover)

96 R, C, Atkinson, J. W. Brelsford, and R. M, Shirk In. Multi-process models for memory with applications to a continuous presentation task,
April 13, 1966. (J, math. Psychol., 1967, 4, 277-300).

97 P. Suppes and E. Crothers. Some remarks on stimulus-response theories of language learning. June 12, 1966.
98 R. BJork. All-or-none subprocesses In the learning of complex sequences. (J. math. Psychol 1968, I , 182-195).
99 E. Gammon. The statistical determination of linguistic units. July1,1966.

100 P. Suppes, L, Hyman, and M. Jerman. Linear structural models for response and latency performance In arithmetic. do J. P. Hill fed.),
Minnesota Symposia on Child Psychology. Minneapolis, Minn.: 1967. Pp, 160-200).

101 J. L. Young. Effects of intervals between reinforcements and test trials In paired-associate learning. August 1, 1966.

102 H. A, Wilson. An Investigation of linguistic unit size In memory processes. August 3,1966.

103 J. T. Townsend. Choice behavior in a cued-recognition task. August 8,1966.

104 W. H. Batchelder. A mathematical analysis of multi-level verbal learning. August 9,1966.

105 H. A. Taylor. The observing response in a cued psychophysical task. August 10, 1966.

106 R. A. Mork . Learning and short-term retention of paired associates In relation to specific sequences of Interpresentation Intervals.

August 11, 1966.

107 R. C. Atkinson and R. M. Shlffrin. Some Two-process models for memory. September 30,1966.

108 P. Suppes and C. ihrke. Accelerated program In elementary-school mathematicsthe third year. January 30,1967.

109 P. Suppes and I. Rosenthal-Hill, Concept formation by kindergarten children in a card-sorting task. February 27,1967,

110 R. C. Atkinson and R. M. Shiffrin. Human memory: a proposed system and its control processes. March 21,1967.

141 Theodore S. Rodgers. Linguistic considerations In the design of the Stanford computer-based curriculum In Initial reading. June 1,1967.

112 Jack M. Knutson. Spelling drills using a computer-assisted instructional system. June 30,1967.

113 R. C. Atkinson. Instruction in initial reading under computer control: the Stanford Project. July14,1967.
114 J. W. Brelsford, Jr. and R. C. Atkinson. Recall of paired-associates as a (unction of overt and covert rehearsal procedures. July 21,1967,

115 J. H. Stelzer. Some results concerning subjective probability structures with stank:viers. August 1,1967

116 D. E. Rumelhart. The effects of Interpresentation Intervals on performance in a continuous paired nssociate task. August II, 1967.

117 E. J. Fishman, L. Keller, and R. E. Atkinson. Massed vs. distributed practice in computerized spelling drills. August 18,1967.

118 G. J. Groan. An Investigation of some counting algorithms for simple addition problems. August 21,1967.

119 H. A. Wilson and R. C. Atkinson. Computer-based Instruction In Initial.reading: a-progress report on the Stanford Project. August 25,1967.

1ZG F. S. Roberts and P. Suppes. Some problems in the geometry of visual perception. August 31,1967. (Synthest, 1967, 17, 173 -201)
121 D. Jamison. Bayestan decisions under total and partial Ignorance. D. Jamison and J. Kozleleckf. Subjective probabilities under total

uncertainty. September 4,1967.
122 R. C. Atkinson. Computerized Instruction and the learning process. September 15, 1967.

123 W. K. Estes. Outline of a Oxon, of punishment. October 1,1967.

124 T, S. Rodgers. Measuring vocabulary difficulty: An analysis of item t riables In learning Russian-English and Japanese-English vocabulary

parts. December 18, 1967.

125 W. K. Estes. Reinforcement in human learning, December 20,1967.

126 G. L. Wolford, D. L. Wessel, W. K. Estes. Further evidence concerning scanning and sampling assumptions of visual detection

models. January 31,1968.

127 R. C. Atkinson and R. M. ShIffrin. Some speculations on storage and retrieval processes In long-term memory. February 2,1968.

128 John Holmgren. Visual detection with imperfect recognition. March 29,1968.

129 Lucille B. Miodnosky. The Frostig and the Bender Gestalt as predictors of reading achievement. April 12,1968.

130 P. Suppes. Some theoretical models for mathematics learning. April 15, 1968. (Journal of Research and Development In Education,

1967, I , 5-22)
131 G. M. Olson. Learning and retention in a continuous recognition task. May 15,1968.
132 Ruth Norene Hartley. An investigation of list types and cues to facilitate initial reading vocabulary acquisition. May 29, 1968.
133 P. Suppes. Stimulus-response theory of finite automata. June 19, 1968.

134 N. Molar and P. Suppes. Quantifier-free axioms for constructive plane geometry. June 20, 1968. (In J. C. H. Gerretsen and
F. Oort (Eds.), Com_positio Mathematics. Vol. 20. Groningen, The Netherlands: Wolter -Noordhoff, 1968. Pp. 143-152.)

135 W. K. Estes and 0. P. Horst. Latency as a function of number or response alternatives In paired - associate teeming. July I, (968.

136 M. Schlag-Rey and P. Suppes. High-order dimensions in concept identification. July 2, 1968. (Psychoin. Sci., 1968, 11, 141-142)

137 R. M. Shiffrin. Search and retrieval processes In long-term memory. August 15, 1968.
138 R. D. Freund, G. R. Loftus, and R.C. Atkinson. Applications of muitiprocess models for memory to continuous recognition tasks.

December 18, 1968.
139 R. C. Atkinson. Information delay in human learning. December 18,1968.

140 R. C. Atkinson, J. E. Hoimgren, and. J. F. Juoia. Processing time as influenced by the number of elements in the visual display.

March14, 1969

141 P. Suppes, E. F. Loftus, and M. Jerman. Problem-solving on a computer-based teletype. March 25,1969,

142 P. Suppes and Mona Morningstar. Evaluation of three computer-assisted Instruction programs. May 2,1969.

143 P. Suppes. On the problems of using mathematics in the development of the social sciences. May 12, 1969.

144 Z. Domotor. Probabilistic relational structures and their applications. May 14, 1969.

145 R. C. Atkinson and T. D. Wiokens. Human memory and the concept of reinforcement. May 20, 1969.

146 R. J. Titiev. Some model-theoretic results In measurement theory. May 22,1969.

147 P. Suppes. Measurement: Problems of theory and application. June12, 1969.

148 P. Suppes and C. [hike. Accelerated program in elementary-school mathematicsthe fourth year. August 7, 1969.
149 D. Rundus and R.C. Atkinson. Rehearsal in free recall: A procedure For direct observation. August 12, 1969.
.150 P. Suppes and S. Feldman. Young children's comprehension of logical connectives. October 15, 1969.

(Continued on back cover)

(Continued from inside back cover

151 Joaguitn H. Laubsch. An adaptive teaching system for optimal item allocation. November 14, 1969.
152 Roberta L. Klatzky and Richard C. Atkinson. Memory scans based on alternative test stimulus representations. November 25, 1969.
153 John E. Ho Imoren. Response latency as an Indicant of information processing in visual search tasks. March 16, 1970.
154 Patrick Suppes. Probabilistic grammars for natural languages. May 15, 1970.
155 E. Gammon. A syntactical analysis of some first-grade readers. Julie 22, 1970.
156 Kenneth N. Wexler. An automaton analysis of the learning of a miniature system of Japanese. July 24, 1970.
157 R. C. Atkinson and J.A. Paulson. An approach to the psychology of instruction, August 14, 1970.
158 R.C. Atkinson, J.D. Fletcher, N.C. Chetiii, and C.M. Stauffer. Instruction in initial reading under computer control: the Stanford project.

August 13, 1970
159 Dewey J. Rundus. An analysis of rehearsal processes in free recall. August 21, 1970.
160 R,L. Klatzky, J.P. Juola and R.C. Atkinson, Test stimulus representation and experimental context effects in memory scanning.

161 William A. Pottmayer. A formal theory of perception. November 13, 1970.
162 Elizabeth Jane Fishman Loftus. An analysis of the structural variables that determine problem-solving difficulty on a computer-based teletype,

Oecernber 18, 1970.
163 Joseph A. Van Canipen. Towards the automatic generation of programmed foreign-language instructional materials. January 11, 1971.

164 Jamesine Friend and R.C. Atkinson. Computer-assisted instruction in programming: AID, January 25, 1971.

165 Lawrence James Hubert. A forrnal model for the perceptual processing of geometric configurations, February 19, 1971.
166 J. F. Juo la, I.S, Fisch ler, C.T. Wood, and R. C. Atkinson. Recognition time for information stored in long-term memory.

167 R.L. Klatzky and R.C. Atkinson, Specialization of the cerebral hemispheres in scanning for information in short-term memory.

168 J.D. Fletcher and R. C. Atkinson. An evaluation of the Stanford CAI program in initial reading (grades K through 3). March 12, 1971.
169 James F. Juo la arid R. C. Atkinson. Memory scanning for words versus categories.

170 Ira S. Fisch ler and James F, Juola. Effects of repeated tests on recognition time for information in long-term memory.

171 Patrick Suppes. Semantics of context-free fragments of natural languages. March 30, 1971.
172 Jamesine Friend. Instruct coders' manual. May 1, 1971,
173 R.C. Atkinson and R. M. Shiffrin, The control processes of short-term memory, April 19, 1971.
174 Patrick Suppes. Computer-assisted instruction at Stanford, May 19, 1971,
175 D. Jamison, J.O. Fletcher, P. Suppes,and R .0 Atkinson. Cost and performance of computer-assisted instruction for compensatory education.

17b Joseph OHM. Some mathematical models of individual differences in learning and performance. June 28, 1971.
177 Richard C. Atkinson and James F. Juola. Factors influencing speed and accuracy of word recognition. August 12, 1971.

178 P. Suppes, A. Goldberg, G. Kanz, B. Searle,and C. Stauffer. Teacher's handbook for CAI courses. September 1, 1971.

179 Adele Goldberg. A generalized instructional system for elementary mathematical logic. October 11, 1971.

180 Max Jerman. Instruction in problem solving and an analysis of structural variables that contribute to problem-solving difficulty. November 12, 1971.

181 Patrick Suppes. On the grammar and model-theoretic semantics of children's noun phrases. November 29, 1971.

182 Georg Kreisel. Five notes on the application of proof theory to computer science. December 10, 1971.
183 James Michael Moloney. An investigation of college student performance on a logic curriculum in a computer-assisted instruction setting.

January 28, 1972.

184 J.E. Friend, J.D. Fletcheynd R.C. Atkinson. Student performance in computer-assisted instruction in programming, May 10, 197?.

185 Robert Lawrence Smith, Jr. The syntax and semantics of ERICA. June 14, 1972.

186 Adele Goldberg and Patrick Suppes. A computer-assisted instruction program for exercises on finding axioms. June 23, 1972.
187 Richard C. Atkinson. Ingredients for a theory of instruction. June 26, 1972.
188 John D. Ficrivillian and Veda R. Charrow. Psycho linguistic implications of deafness: A review. July 14, 1972.
189 Phipps Arabie and Scott A. Boorman. Multidimensional scaling of measures of distance between partitions. July 26, 1972.

190 John Ball and Dean Jamison. Computer-assisted Instruction for dispersed populations: System cost models. September 15, 1972.

191 W. R. Sanders and J. R. Ball. Logic documentation standard for the Institute for Mathematical Studies in the Social Sciences.
October 4 ,1972.

192 M.T. Kane. Variability in the proof behavior of college students in a CAI course in logic as d function of problem characteristics.

October 6, 1972.

193 P. Suppes. Facts and fantasies of education. October 18, 1972.
194 R. C. Atkinson and J. F. Juola. Search and decision processes in recognition memory. October 27, 1972.
195 P. Suppes, R. Smith , and M. Leveille. The French syntax and semantir.s of PHILIPPE, part 1 Noun phrases. November 3, 1972.
196 0. Jamison, P. Suppes, and S. Wells. The effectiveness of alternative instructional methods: A survey. November 1972.

197 P. Suppes. A survey of cognition in handicapped children. December 29, 1972.

198 B. Searle, P. Lorton, Jr., A. Goldberg, P. Suppes, N. Ledet, and C. Jones. Computer-assisted instruction program: Tennessee State University.
February 14, 1973.

199 D. P. Levine. Computer-based analytic grading for German grammar instruction. March 16, 1973.

200 P. Suppes, J.D. Fletcher, M. Zanotti, P. V. Lorton,Jr., and B. W. Searle. Evaluation of computer-assisted instruction in elementary
mathematics for hearing-impaired students. March 17, 1973.

201 G. A. Huff. Geometry and formal linguistics. April 27, 1973.

